Balanced Trees
Part One



Balanced Trees

 Balanced search trees are among the
most useful and versatile data structures.

« Many programming languages ship with
a balanced tree library.
e C++4: std::map / std::set
* Java: TreeMap / TreeSet

 Many advanced data structures are
layered on top of balanced trees.

« We'll see several later in the quarter!



Where We're Going

 B-Irees (Today)

« A simple type of balanced tree developed for
block storage.

* Red/Black Trees (Today/Thursday)
 The canonical balanced binary search tree.
- Augmented Search Trees (Thursday)

 Adding extra information to balanced trees
to supercharge the data structure.



Outline for Today

« BST Review
 Refresher on basic BST concepts and runtimes.
 Overview of Red/Black Trees
 What we're building toward.
 B-Irees and 2-3-4 Trees
« Simple balanced trees, in depth.
» Intuiting Red/Black Trees

A much better feel for red/black trees.



A Quick BST Review



Binary Search Trees

A binary search tree is a
binary tree with the e
following properties:

 Each node in the BST
stores a key, and e @
optionally, some auxiliary

information. 0 6 @ @

 The key of every node in a
BST is strictly greater
than all keys to its left and e 0 @ @
strictly smaller than all

keys to its right. 9 e @ @

 Note: Keys and nodes are
related but are not
synonymous. You'll see why
later.



Binary Search Trees

 The height of a binary
search tree is the length 9
of the longest path from

the root to a leaf,
measured in the number 9 @
of edges.

A tree with one node has 0 G @ @

height 0.

A tree with no nodes has e e @ @

height -1, by convention.

 The height of a BST bounds
the costs of most basic 9 e e @
operations (search, insert,
lookup, successor, max, etc.)
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Inserting into a BST
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Inserting into a BST
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Deleting from a BST



Deleting from a BST

Delete 60 from this tree, then
73, and then 137. How did you
do the deletions?

Answer at
ttps://cs166.stanford.edu/pollev

h



https://cs166.stanford.edu/pollev

Deleting from a BST
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Deleting from a BST

Case 0O: 1f the node has
just no children, just
remove it.
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Deleting from a BST

Case 1: If the node has
just one child, remove

it and replace it with
its child.
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Deleting from a BST
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Deleting from a BST

Case 2: If the node has two @ @

children, find its inorder
successor (which has zero or
one child), replace the node's
key with its successor's key,

then delete its successor.




Runtime Analysis

 The time complexity of all these operations
is O(h), where h is the height of the tree.

« That’s the longest path we can take.

* In the best case, h = O(log n) and all
operations take time O(log n).

 In the worst case, h = O(n) and some
operations will take time ©(n).

* Challenge: How do you eftficiently keep
the height of a tree low?



A Glimpse of Red/Black Trees



Red/Black Trees

A red/black tree is a

BST with the
following properties:

* Every node is either
red or black.

 The root is black.

e No red node has a red
child.

* Every root-null path in
the tree passes
through the same
number of black nodes.
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A red/black tree is a
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Red/Black Trees

» Theorem: Any red/black tree with n
nodes has height O(log n).

 We could prove this now, but there's a much
simpler prooft of this we'll see later on.

* Given a fixed red/black tree, lookups can
be done in time O(log n).



Mutating Red/Black Trees
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Mutating Red/Black Trees
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23

What are we
supposed to do with
this new node?
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Mutating Red/Black Trees

How do we fix up the
black-height property?




Fixing Up Red/Black Trees

 The Good News: After doing an insertion or
deletion, we can locally modify a red/black tree
in time O(log n) to fix up the red/black
properties.

e The Bad News: There are a lot of cases to
consider and they're not trivial.

 Some questions:

« How do you memorize / remember all the rules
for fixing up the tree?

« How on earth did anyone come up with
red/black trees in the first place?



Fixing Up Red/Black Trees

« How on earth did anyone come up with
red/black trees in the first place?



Time-Out for Announcements!



Lecture Participation Opt-Out

By default, lecture participation (PollEV)
accounts for 5% of your course grade.

» If you’d like to opt out of lecture
participation and add that extra 5% to
your final exam, you can opt out by this
Friday at 11:59PM.

* Check Ed for the link you can use to do
this.



Problem Set 2

 Problem Set 1 is graded and solutions are now up on
Gradescope.

* Problem Set 2 is due Thursday at 1:00PM.

* Friendly reminder for the coding component: don’t try
doing this all in one go. Break it down into smaller, more
easily testable pieces.

« Kai has some excellent advice about coding up advanced
data structures; check it out!

« Remember to write beautiful code: decompose complex
functions into multiple helpers, comment aggressively, etc.

» Stop by OH or ask on Ed if you have any questions!



https://docs.google.com/document/d/1FM6el7eMH105ppR0r4M9i-SrjaPIErQSmV2sypR2cvw/edit?usp=sharing

Back to CS16606!



How did anyone come up with
red/black trees in the first place?



Multiway Search Trees



Generalizing BSTs

* In a binary search tree, each node stores a single key.

 That key splits the “key space” into two pieces, and
each subtree stores the keys in those halves.




Generalizing BSTs

 In a multiway search tree, each node stores an

arbitrary number of keys in sorted order.

A node with k keys splits the key space into k+1
regions, with subtrees for keys in each region.

0
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Generalizing BSTs

 In a multiway search tree, each node stores an
arbitrary number of keys in sorted order.

4346
\J
5 1931 45 7183
/ Y
3 7111317 2329 3741 4753596167 7379 8997

* Surprisingly, it’s a bit easier to build a balanced
multiway tree than it is to build a balanced BST.

Let’s see how.




Balanced Multiway Trees
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 We can always just cram more keys into a single node!
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Balanced Multiway Trees

* In some sense, building a balanced multiway tree isn’t
all that hard.

 We can always just cram more keys into a single node!

232631 415358596284 9397

« At a certain point, this stops being a good idea - it’s
basically just a sorted array. What does “balance” even
mean here?



Balanced Multiway Trees

e What could we do if

our nodes get too big?



Balanced Multiway Trees

 What could we do if
our nodes get too big?

 Option 1: Push the
new key down into its
own node.



Balanced Multiway Trees
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Balanced Multiway Trees

 What could we do if
our nodes get too big?

 Option 1: Push the
new key down into its
own node.

* Option 2: Split big
nodes in half, kicking
the middle key up.
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Balanced Multiway Trees

 What could we do if
our nodes get too big?

. Option 1: Push the 23263141 535859849397
new key down into its v
own node. 62

* Option 2: Split big
nodes in half, kicking
the middle key up.
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Balanced Multiway Trees

e What could we do if

our nodes get too big?

. Option 1: Push the 23263141 535859849397
new key down into its v
own node. 62

* Option 2: Split big

nodes in half, kicking
the middle key up.
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Balanced Multiway Trees

e What could we do if

our nodes get too big?

. Option 1: Push the 23263141 535859849397
new key down into its v
own node. 62

* Option 2: Split big

nodes in half, kicking
the middle key up.
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Balanced Multiway Trees

What could we do if
our nodes get too big?

Option 1: Push the 232631415358593849397
new key down into its v
own node. 62

Option 2: Split big
nodes in half, kicking
the middle key up.

Assume that, during an
insertion, we add keys 2326314153 596284 9397
to the deepest node
possible.




Balanced Multiway Trees

What could we do if
our nodes get too big?

Option 1: Push the 2326314153 5859 849397

new key down into its
own node.

Option 2: Split big
nodes in half, kicking
the middle key up.

Assume that, during an

62

insertion, we add keys 23

26314153 5962849397

to the deepest node
possible.

How do these options
compare? Answer at
https://cs166.stanford.edu/pollev



https://cs166.stanford.edu/pollev

Balanced Multiway Trees

 Option 1: Push keys

down into new nodes.

« Simple to implement.

e Can lead to tree
imbalances.
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« Simple to implement.
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* Option 2: Split big
nodes, kicking keys
higher up.
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balanced.
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Balanced Multiway Trees

 Option 1: Push keys
down into new nodes.

« Simple to implement.

e Can lead to tree
imbalances.

* Option 2: Split big
nodes, kicking keys
higher up.

 Keeps the tree
balanced.

« Slightly trickier to
implement.
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Balanced Multiway Trees

* General idea: Cap the maximum number of keys in a
node. Add keys into leaves. Whenever a node gets too
big, split it and kick one key higher up the tree.

39\
30 33\ '/50\‘
3435 40

1020 3132 99

o

 Advantage 1: The tree is always balanced.

 Advantage 2: Insertions and lookups are pretty fast.



Balanced Multiway Trees

 We currently have a mechanical description of how
these balanced multiway trees work:

 Cap the size of each node.
« Add keys into leaves.

« Split nodes when they get too big and propagate the
splits upward.

 We currently don’t have an operational definition of
how these balanced multiway trees work.

* e.g. “A Cartesian tree for an array is a binary tree
that’s a min-heap and whose inorder traversal gives
back the original array.”



B-ITrees

A B-tree of order b is a multiway search tree where

* each node has between b-1 and 2b-1 keys, except the root,
which may have between 1 and 2b-1 keys;

 each node is either a leaf or has one more child than key; and
« all leaves are at the same depth.

Different authors give different bounds on how many keys can be
in each node. The ranges are often [b-1, 2b-1] or [b, 2b]. For the

purposes of today’s lecture, we’ll use the range [b-1, 2b-1] for the
key limits, just for simplicity.
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Analyzing B-Trees



The Height of a B-Tree

 What is the maximum possible height of a B-tree of
order b that holds n keys?

Intuition: The branching factor
of the tree is at least b, so the
number of keys per level grows
exponentially in b. Therefore,
we’'d expect something along the
lines of O(log, n).




The Height of a B-Tree

 What is the maximum possible height of a B-tree of
order b that holds n keys?

1
b-1 b-1 2(b-1)
b-1 .. b-1 b-1 .. b-1 2b(b - 1)
Vo Vo
b-1 .. .. .. b-1 b-1 .. .. ... b-1 2b%(b-1)

b-1 | b-1 b-1 2b"i(b-1)




The Height of a B-Tree

 Theorem: The maximum height of a B-tree of order
b containing n keys is O(log, n).

* Proof: Number of keys n in a B-tree of height h is
guaranteed to be at least

1+2(b-1)+2b(b-1)+2b*(b-1)+...4+2b"(b-1)
=1+ 2(-1)(1+ b+ b*+ ...+ b")
=1+ 2(b-1)(b"-1)/(b-1))
=1+ 2(b"-1) =2b"-1.
Solving n = 2b" - 1 yields h = log, ((n + 1) / 2), so
the height is O(log, n). W



Analyzing Efficiency

 Suppose we have a
B-tree of order b. Answer at

e What is the worst-
case runtime of
looking up a key in
the B-tree?

https://cs166.stanford.edu/pollev
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Analyzing Efficiency

* Suppose we have a
B-tree of order b.

e What is the worst-
case runtime of / / I \\

looking up a key in
the B-tree?
 Answer: It

depends on how
we do the search!




Analyzing Efficiency

* To do a lookup in a
B-tree, we need to

determine which / \
child tree to
descend into. / \ \

* This means we need
t0O compare our
query key against
the keys in the node.

* Question: How
should we do this?



Analyzing Efficiency

« Option 1: Use a linear
search.

« Cost per node: O(b).
- Nodes visited: O(log, n). / \
\/

 Total cost:

O(b) - O(log, n)
= O(b log, n)



Analyzing Efficiency

Option 2: Use a binary
search.

Cost per node: O(log b).
Nodes visited: O(log, n).
Total cost:
O(log b) - O(log, n)
= O(log b - log, n)

= O(log b - (log n) / (log b))
= O(log n).

That’s the same as for binary
search or a balanced BST.
Why is that?




Analyzing Efficiency

* Suppose we have a
B-tree of order b.

« What is the worst-case
runtime of inserting a / \
key into the B-tree? Y

* Each insertion visits
O(log, n) nodes, and in

the worst case we
have to split every
node we see.

- Answer: O(b log, n).



Analyzing Efficiency
« The cost of an insertion in a B-tree of order b
is O(b log, n).

« What’s the best choice of b to use here?
 Note that

Fun fact: This is the
same time bound
you’'d get if you used

= Db (log n/ log b) a b-ary heap instead
of a binary heap for
— (b / lOg b) 109— n. a priority queue.
 What choice of b minimizes b / log b?

 Answer: Pick b = e. (Or rather, b = |e] = 2.)

b log, n




2-3-4 ‘Trees

« A 2-3-4 tree is a B-tree of order 2. Specifically:

 each node has between 1 and 3 keys;

* each node is either a leaf or has one more child than key; and

« all leaves are at the same depth.

* You actually saw this B-tree earlier! It’s the type of tree from our
insertion example.
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The Story So Far

A B-tree supports
* lookups in time O(log n), and
- insertions in time O(b log, n).
» Picking b to be around 2 or 3 makes this
optimal in Theoryland.
 The 2-3-4 tree is great for that reason.

» Plot Twist: In practice, you most often
see choices of b like 1,024 or 4,096.

* Question: Why would anyone do that?
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The Memory Hierarchy



Memory Tradeoifs

There is an enormous tradeoff between speed and size
In memory.

SRAM (the stuff registers are made of) is fast but very
expensive:

 Can keep up with processor speeds in the GHz.

« SRAM units can’t be easily combined together;
increasing sizes require better nanofabrication
techniques (difficult, expensive).

Hard disks are cheap but very slow:

« As of 2025, you can buy a 4TB hard drive for about $85.

« As of 2025, good disk seek times for magnetic drives are
measured in ms (about two to four million times slower
than a processor cycle!)



The Memory Hierarchy

« Idea: Try to get the best of all worlds by
using multiple types of memory.



The Memory Hierarchy

« Idea: Try to get the best of all worlds by
using multiple types of memory.

Registers

L1 Cache

L2 Cache

Main Memory

Hard Disk

Network (The Cloud) *

256B - 8KB 0.25 - 1ns
16KB - 64KB Ins - 5ns
1MB - 4MB bns - 25ns
4GB - 2506GB  2b6ns - 100ns
1TB+ 3 - 10ms
Lots 10 - 2000ms

* in some data centers, it’s
faster store all data
in RAM and access it
over the network than
to use magnetic disks!



The Memory Hierarchy

Main Memory

Hard Disk

4GB - 256GB  25ns - 100ns
1TB+ 3 - 10ms

* in some data centers, it’s
faster store all data
in RAM and access it
over the network than
to use magnetic disks!



External Data Structures

 Suppose you have a data set that’s way too big to fit in RAM.
e The data structure is on disk and read into RAM as needed.

* Data from disk doesn’t come back one byte at a time, but
rather one page at a time.

e Goal: Minimize the number of disk reads and writes, not the
number of instructions executed.

“Please give me 4KB
starting at location addrl”

>

1101110010111011110001...




External Data Structures

 Suppose you have a data set that’s way too big to fit in RAM.
e The data structure is on disk and read into RAM as needed.

* Data from disk doesn’t come back one byte at a time, but
rather one page at a time.

e Goal: Minimize the number of disk reads and writes, not the
number of instructions executed.

Calculate..
Think..
Compute..




External Data Structures

 Suppose you have a data set that’s way too big to fit in RAM.
e The data structure is on disk and read into RAM as needed.

* Data from disk doesn’t come back one byte at a time, but
rather one page at a time.

e Goal: Minimize the number of disk reads and writes, not the
number of instructions executed.

“Please give me 4KB
starting at location addr2”

>

001101010001010001010001...




Analyzing B-Trees

 Suppose we tune b so that each node in the B-tree
fits inside a single disk page.

 We only care about the number of disk pages read
or written.

e It’s so much slower than RAM that it’ll dominate the
runtime.

* Question: What is the cost of a lookup in a B-tree
in this model?

* Question: What is the cost of inserting into a
B-tree in this model?



Analyzing B-Trees

 Suppose we tune b so that each node in the B-tree
fits inside a single disk page.

 We only care about the number of disk pages read
or written.

e It’s so much slower than RAM that it’ll dominate the
runtime.

* Question: What is the cost of a lookup in a B-tree
in this model?

- Answer: The height of the tree, O(log, n).

* Question: What is the cost of inserting into a
B-tree in this model?

- Answer: The height of the tree, O(log, n).



External Data Structures

* Because B-trees have a huge branching factor, they're
great for on-disk storage.

» Disk block reads/writes are slow compared to CPU
operations.

 The high branching factor minimizes the number of blocks
to read during a lookup.

« Extra work scanning inside a block offset by these savings.

* Major use cases for B-trees and their variants (B*-trees,
H-trees, etc.) include

« databases (huge amount of data stored on disk);
 file systems (ext4, NTFS, ReFS); and, recently,
* in-memory data structures (due to cache effects).



Analyzing B-Trees

 The cost model we use will change our overall
analysis.

* Cost is number of operations:
O(log n) per lookup, O(b log, n) per insertion.

 Cost is number of blocks accessed:
O(log, n) per lookup, O(log, n) per insertion.

* Going forward, we’ll use operation counts as our
cost model, though there’s a ton of research done
on designing data structures that are optimal from
a cache miss perspective!



The Story So Far

 We’ve just built a simple, elegant,
balanced multiway tree structure.

« We can use them as balanced trees in
main memory (2-3-4 trees).

 We can use them to store huge quantities
of information on disk (B-trees).

e We’ve seen that different cost models are
appropriate in different situations.



So... red/black trees?



Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.




Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.

 After we hoist red nodes into
their parents:

« Each “meta node” has 1, 2, or 3
keys in it. (No red node has a red

child.) This is a

- Each “meta node” is either a leaf or 2-3-4 tree!
has one more child than key. (Root-
null path property.)

e Each “meta leaf” is at the same
depth. (Root-null path property.)



Data Structure Isometries

* Red/black trees are an isometry of 2-3-4
trees; they represent the structure ot 2-3-4
trees in a different way.

 Many data structures can be designed and
analyzed in the same way.

* Huge advantage: Rather than memorizing
a complex list of red/black tree rules, just
think about what the equivalent operation
on the corresponding 2-3-4 tree would be
and simulate it with BST operations.



Next Time

* Deriving Red/Black Trees

« Figuring out rules for red/black trees using
our i1Isometry.

* Tree Rotations
* A key operation on binary search trees.
- Augmented Trees

* Building data structures on top of balanced
BSTs.
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